Comparison of Averaging Methods for Interface Conductivities in One-dimensional Unsaturated Flow in Layered Soils

نویسندگان

  • Ruowen Liu
  • Bruno Welfert
چکیده

The water flow in unsaturated soils is governed by Richards equation, a nonlinear parabolic partial differential equation. In a layered unsaturated soil, enforcing the continuity of both pressure head and flux across the interface of distinct soil materials leads to a non-linear interface equation. This interface equation may exhibit multiple solutions. Using different averaging methods for cell-centered hydraulic conductivities impacts the ill-posedness of this interface problem and therefore affects the numerical simulations of transient unsaturated flow. Four averaging methods for cell-centered conductivities (arithmetic, harmonic, geometric or log-mean) are compared in this study. The choice of averaging schemes impacts the limit of discretization size that is needed to guarantee a unique solution of the interface equation. Numerical experiments confirm that the averaging schemes leading to larger interface conductivity averages (log-mean) are less likely to be affected by the non-uniqueness of solutions to the interface problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selection of Intermodal Conductivity Averaging Scheme for Unsaturated Flow in Homogeneous Media

The nonlinear solvers in numerical solution of water flow in variably saturated soils are prone to convergence difficulties. Many aspects can give rise to such difficulties, like very dry initial conditions, a steep pressure gradient and great variation of hydraulic conductivity occur across the wetting front during the infiltration of water.  So, the averaging method applied to compute hydraul...

متن کامل

Analytical D’Alembert Series Solution for Multi-Layered One-Dimensional Elastic Wave Propagation with the Use of General Dirichlet Series

A general initial-boundary value problem of one-dimensional transient wave propagation in a multi-layered elastic medium due to arbitrary boundary or interface excitations (either prescribed tractions or displacements) is considered. Laplace transformation technique is utilised and the Laplace transform inversion is facilitated via an unconventional method, where the expansion of complex-valued...

متن کامل

حل عددی معادله جریان یک بعدی آب در خاک با استفاده از روش عملگرهای مرجع

In this paper, a numerical solution is presented for one-dimensional unsaturated flows in the subsurface. Water flow in the subsurface, however, is highly nonlinear and in most cases, exact analytical solutions are impossible. The method of reference-operators has been used to formulate a discrete model of the continuum physical system. Many of the standard finite difference methods and also th...

متن کامل

حل عددی معادله جریان یک بعدی آب در خاک با استفاده از روش عملگرهای مرجع

In this paper, a numerical solution is presented for one-dimensional unsaturated flows in the subsurface. Water flow in the subsurface, however, is highly nonlinear and in most cases, exact analytical solutions are impossible. The method of reference-operators has been used to formulate a discrete model of the continuum physical system. Many of the standard finite difference methods and also th...

متن کامل

An investigation into a Geocell-reinforced Slope in The Unsaturated Numerical Model

Considering unsaturation conditions of soil significantly helps to produce relatively real results. Numerical methods have been assumed as conventional methods in soil mechanics to examine soil behavior. However, the accuracy of numerical methods dramatically depends on applying the appropriate behavioral model to solve problems. One of the known elastoplastic models for unsaturated soils i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016